首页 > 怀旧年代

历史上的今天 1993年-中国数学家冯康逝世

怀旧网 怀旧年代 2021-08-17 08:44:36 80后的回忆

冯康
  冯康(1920年9月9日-1993年8月17日),浙江绍兴人 ,出生于江苏省南京市,数学家、中国有限元法创始人、计算数学研究的奠基人和开拓者,中国科学院院士 ,中国科学院计算中心创始人、研究员、博士生导师。

  1944年冯康毕业于国立中央大学 ;1945年在复旦大学数学物理系担任助教;1946年到清华大学任物理系助教;1951年转任数学系助教;1951年调到中国科学院数学研究所,担任助理研究员,后在苏联斯捷克洛夫数学研究所进修;1957年调入中国科学院计算技术研究所; 1965年发表了名为《基于变分原理的差分格式》的论文,这篇论文被国际学术界视为中国独立发展“有限元法”的重要里程碑;1978年起任中国科学院计算中心主任;1980年当选为中国科学院院士;1993年8月17日逝世于北京 ;1997年冯康的“哈密尔顿系统辛几何算法”获得国家自然科学奖一等奖 。

  冯康主要研究拓扑群、广义函数、应用数学、计算数学、科学与工程计算。他提出的“最小几乎周期拓扑群”解决了这一类李群的结构表征问题;建立了广义函数的泛函对偶定理与“广义梅林变换”;“基于变分原理的差分格式”独立于西方创始了有限元方法;提出了自然边界归化和超奇异积分方程理论,发展了有限元边界元自然耦合方法;“论差分格式与辛几何”系统地首创辛几何计算方法、动力系统及其工程应用的交叉性研究新领域

  人物生平

  1920年9月9日,冯康出生于江苏省南京市,籍贯浙江绍兴。少年时代家居江苏省苏州市,他的父亲是知识分子,长年在外做文职职员,母亲操持家务,全家靠父亲薪金收入,生活水平算是中等,父亲主张让子女受到现代教育,冯康兄弟姐妹从小都很用功读书。

  1926年开始,冯康先后在江苏省立苏州中学所属实验小学、初中部及高中部就读,学业一贯优异 。中学以后,他对物理和数学有了浓厚的兴趣,这为他以后的科学生涯定了基调。

  1937年,抗战开始不久,家乡遭受敌机轰炸,学校解散,随后江南地区沦陷。冯康和当时大多数爱国青年一样,痛恨日本侵略军,对抗战胜利抱着希望,离开沦陷区转到后方。

  1938年秋,他随家迁至福建,有半年在家中自学,读的是萨本栋的《普通物理学》。

  1939年春,他以同等学历考入福建协和学院数理系学习,同年秋季重新考入重庆中央大学电机工程系学习,两年后转物理系。在大学时期兼修了电机、物理、数学三系的主课,这一基础背景对他后来的发展也起了独特的作用。1944年,毕业后他的科学方向转为数学,主要从事基础数学研究。

  1945年,担任复旦大学数学物理系助教(至1946年) 。

  1946年,担任清华大学物理系及数学系助教(至1950年) 。

  1951年,担任中国科学院数学研究所助理研究员(至1956年),同年进入苏联斯捷克洛夫数学研究所进修(至1953年),自此期间先后受教于风格各异的数学家陈省身、华罗庚和苏联的Л.C.庞特里亚金。

  1957年,进入中国科学院计算技术研究所工作,负责科学与工程计算及计算数学的学术指导工作,他的科研方向转为应用数学与计算数学,先后担任副研究员、研究员(-1978年)。

  1978年,从中国科学院计算技术研究所分立,创立了中国科学院计算中心,出任中心主任(至1987年)。

  1980年,当选为中国科学院院士 。

  1987年,担任中国科学院计算中心名誉主任。

  1990年,在冯康的倡导、并亲自筹备和组织下成立中国科学院科学与工程计算国家重点实验室,该实验室由原中科院计算中心从事计算数学研究的部分课题  。

  1993年8月17日,逝世于北京。

  主要成就

  科研成就

科研综述

拓扑群研究

  冯康最早的工作(没有发表)是辛群的生成子和四维数代数基本定理的拓扑证明。接着他研究殆周期拓扑群理论,这是1934年由冯·诺依曼创始的,与酉阵表现密切相连。按照群所有的酉阵表现的多寡分出两种极端类型:极大殆周期群-有“足够多”的酉阵表现;极小殆周期群-没有非平凡酉阵表现。1936年A.韦伊(Weil)及H.弗勒登塔尔(Freudenthal)解决了极大群的表征问题,它们就是紧群与欧几里得向量群的直积。1940年冯·诺依曼及E.威格纳(Wigner)对于极小群作出了重要进展,但其表征问题一直没有解决。

  1950年,冯康率先对线性李(Lie)群(及其覆盖群)解决了这一问题:没有非平凡酉阵表现的充要条件是“本质上”不可交换与非紧。这一成果在后来酉表现论和物理应用中愈显出其重要性 。

广义函数论研究

  1954年起,冯康开展广义函数系统性理论(50年代初L.施瓦尔茨(Schwartz)提出)的研究,发表了《广义函数论》长篇综合性论文,也含有一些自己的新成果,推动了这项理论在中国的发展。他还建立了广义函数中离散型函数(δ函数及其导数)与连续型函数之间的对偶定理。他应华罗庚教授的建议,建立了广义梅林变换理论,对于偏微分方程和解析函数论等均有应用,国外迟至60年代才出现类似的工作。

计算数学研究

  1957年根据国家12年科学发展规划,中国要填补电子计算机研制与应用领域的空白,冯康调往新成立的计算技术研究所,参加中国计算技术与计算数学的开创工作,由于他在物理及数学方面的坚实基础和渊博知识,为他在计算数学领域的业务指导工作及他个人的研究工作起了重要作用。他作为计算数学这门新兴学科的先行者和带头人,特别重视理论和实践的结合。

  在冯康的指导下,中国科学院计算技术研究所第3研究室承担了大量的国防、国民经济各部门的实际计算任务。冯康亲自讲授了有关的物理、力学知识及计算数学理论,对所有的课题都亲自过问,进行具体的指导;在天气数值预报、大型水坝应力计算、核武器内爆分析与计算、核武器中子迁移方程计算、航天运输工具的高速空气动力学计算、大庆油田地下油水驱动问题、飞机翼气动力颤振性计算、汽轮机叶片流场计算、流体力学稳定性计算等方面取得了一系列学术上有创见性的理论成果及实际效果,并为电子计算机及其应用的普及推广做出了开创性的成绩 。

有限元法的创始

  20世纪50年代末,冯康在解决大型水坝计算问题的集体研究实践的基础上,独立于西方创造了一整套解微分方程问题的系统化、现代化的计算方法,当时命名为基于变分原理的差分方法,即现时国际通称的有限元方法,其系统的理论、总结论文《基于变分原理的差分格式》被刊于1965年《应用数学与计算数学》,是中国独立于西方系统地创始了有限元法的标志,该文提出了对于二阶椭圆型方程各类边值问题的系统性的离散化方法。为保证几何上的灵活适应性,对区域Ω可作适当的任意剖分,取相应的分片插值函数,它们形成一个有限维空间S,是原问题的解空间即C.Л.索伯列夫(Соболев)广义函数空间H1(Ω)的子空间。基于变分原理,把与原问题等价的在H1(Ω)上的正定二次泛函数极小问题化为有限维子空间S上的二次函数的极小问题,正定性质得到严格保持。这样得到的离散形式叫做基于变分原理的差分格式,即当今的标准有限元方法。文中给出了离散解的稳定性定理、逼近性定理和收敛性定理,并揭示了此方法在边界条件处理、特性保持、灵活适应性和理论牢靠等方面的突出优点。这些特别适合于解决复杂的大型问题,并便于在计算机上实现 。

自然边界归化及自然边界元方法的提出

  20世纪60年代以来,有限元方法对于求解有界区域的椭圆边值问题取得了极大的成功,被广泛应用于工程技术和科学计算中,是计算数学的重大成就。但是有些实际计算问题的计算区域是无界的,用有界区域来近似无界区域时,为达到所需的精度,会使计算量大大增加,边界元方法是解决此问题的一种有效途径。关于对微分方程作边界归化的思想,早在上一世纪就已出现,但应用于数值计算却是本世纪60年代才开始,这就是边界元方法,即将微分方程归化为边界上的积分方程。

  由于归化的方法不同,各种边界元方法的数值效果也不尽相同。冯康根据这类问题的物理特性,引用阿达马(Hadamard)型超奇异核,提出自然归化的概念,即通过自然归化后,能量不变,从而保持了问题的本质不变。在这个概念下,他提出了自然边界元方法。该方法除所有边界元方法共有的优点外,还具备许多独特之处:由于通过自然归化后能量不变,使原来椭圆型边值问题的性质都保留,从而保证了自然积分方程的解的存在性、唯一性及稳定性,并且也保证了与有限元方法自然而直接地耦合,由此形成一个有限元与边界元兼容并蓄而自然耦合的整体性系统,能够灵活适应于大型复杂问题,便于分解计算。这是当前与并行计算相关而兴起的区域分解方法的先驱工作。作为特例,冯康对亥姆霍兹(Helmholtz)方程建立了与经典的无穷远处的索墨菲尔德(Sommerfeld)辐射条件相对应的有穷远处的积分型辐射条件,具有理论与应用的价值。

  20世纪70年代,在间断有限元理论方面,冯康建立了间断函数类的庞加莱(Poincaré)型不等式,并在此基础上建立了间断有限元函数空间的嵌入理论,这在国际上是先进的。

  冯康还将椭圆方程的经典理论推广到具有不同维数的组合流形,即由不同维数子流形组成的几何结构,在国际上为首创,为组合弹性结构理论提供了严密的数学基础,解决了有限元法对于组合结构的收敛性问题。此项工作的成果,被写进了专著《弹性结构的数学理论》,受到工程界的欢迎。鉴于诸如机器人以及空间站等高度复杂结构的出现,这一方向会有很大的发展前景,现正由他的学生和一些国外学者在继续工作。

  与此同时,冯康对传统的将椭圆方程归化为边界积分方程的弗雷德霍姆(Fredholm)理论作了重要发展,提出自然归化的概念作为边界归化的标准方法,形成了自然边界元方法,它能和有限元法自然耦合而统于一体,实质上成为后来兴起的适合于并行计算的区域分解法的先驱。

  冯康倡导的自然边界元方法被国内外专家称为当今国际上边界元方法的三大流派之一 。

哈密顿体系哈密顿算法的创立

  1984年起,冯康将研究重点从以椭圆方程为主的平衡态稳态问题转向以哈密顿方程及波动方程为主的动态问题。同年在微分几何和微分方程国际会议上发表的论文《差分格式与辛几何》,首次系统地提出哈密顿方程和哈密顿算法(即辛几何算法或辛几何格式),提出从辛几何内部系统构成算法并研究其性质的途径,提出了他对整个问题领域的独特见解,从而开创了哈密顿算法这一新领域,这是计算物理、计算力学和计算数学的相互结合渗透的前沿界面。自此以后,冯康领导中国科学院计算中心的一个研究小组,将纯理论的辛几何和现代的科学工程计算有机地结合起来,系统地开展了这方面的研究 。

发展中国科学事业

  冯康还为中国计算数学学科的发展多次提出重要的指导性意见,如,创办中国性的计算数学学术刊物,成立中国计算数学学会;向中央领导同志提出紧急建议,呼吁社会各方面重视科学与工程计算,倡议成立科学与工程计算开放实验室,倡议将科学与工程计算列入国家基础研究重点项目等等。特别是,他论证了“实验、理论、计算已成为科学方法上相辅相成的而又相对独立,可以相互补充代替而又彼此不可缺少的三个重要环节”,指出“科学与工程计算作为一门工具性、方法性、边缘交叉性的新科学已经开始了自己的新发展,它包括了近年不断形成的各个计算性学科,如计算数学、计算物理、计算力学、计算化学以及计算地震学等各种计算性工程学。计算数学则是它们的联系纽带和共性基础”。说明了计算手段对于科学技术进步的重要性和迫切性,从而在科学技术发展的战略高度上阐明了科学与工程计算的地位和作用,这将有力地促进计算数学在中国的四个现代化中发挥它应有的作用。后来,科学与工程计算开放实验室建成,“科学与工程计算的方法和理论”被列为“八五”期间国家重点关键基础研究项目,冯康为该项目的首席专家。

所属专题

版权声明


未注明原创的信息,皆为自动获取以及手工整理,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,如果此页面有侵犯到您的权益,请联系站长并发送邮件,提供相关证明(版权证明、身份证正反面、侵权链接),站长将在收到邮件1-12小时内删除。


本文地址:https://www.tn365.com.cn/hj/995.html

留言与评论(共有 0 条评论)
   
验证码:

童年365 - 回忆小时候美好记忆的分享社区

https://www.tn365.com.cn/

滇ICP备19007411号-1

Powered By 童年365 曲靖西西里网络科技服务有限公司

童年365怀旧网情怀分享